

N. Streitz, A. Kameas, and I. Mavrommati (Eds.): The Disappearing Computer, LNCS 4500, pp. 182 – 204, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Towards Dynamic and Cooperative Multi-device
Personal Computing

Spyros Lalis1, Anthony Savidis2, Alexandros Karypidis1, Jurg Gutknecht3,
and Constantine Stephanides2

1 Computer and Communications Engineering Department, University of Thessaly,
Thessaly, Greece

2 Institute of Computer Science, Foundation for Research and Technology Hellas,
Heraklion, Crete, Greece

3 Computer Science Department, Swiss Federal Institute of Technology, Zürich, Switzerland

1 Introduction

The significant technological advances in hardware miniaturisation and data commu-
nications change the landscape of computing in a profound way. A rich variety of
sensing, storage and processing nodes will soon be embedded in artefacts and clothes
worn by people. Numerous computing elements will be integrated in appliances, fur-
niture, buildings, public spaces and vehicles. It now becomes possible to move be-
yond the physical but also mental boundaries of the desktop, and to develop novel
forms of computing that will efficiently support people in their daily activities without
constantly being in the center of their attention.

In the 2WEAR project1, we have explored the concept of a system that can be
formed in an ad-hoc fashion by putting together several wearable, portable and infra-
structure devices that communicate via short-range radio. This setting deviates from
the desktop paradigm in significant ways. What we usually refer to as “the” computer
becomes a collection of different autonomous elements that co-operate in a dynamic
fashion without relying on a pre-arranged setup. Various applications and units of
functionality reside on separate devices that can be widely heterogeneous in terms of
computing and user interaction resources. Moreover, the number and type of elements
comprising the personal system can change at any point in time. Using proximity as a
natural form of control, the user may produce a wide range of system configurations,
leading to different device interactions and application functionality. As a step to-
wards this vision, we have worked towards advanced mechanisms for dealing with yet
at the same time exploiting the heterogeneous and dynamic nature of such a system,
with minimal programmer and user intervention.

In the following, we put our work in perspective of the research done in the area of
ubiquitous computing. We continue by giving a motivating scenario and an overview
of our system architecture. Then, we present in more detail the most important ele-
ments of the 2WEAR system: (i) an open and flexible communication framework; (ii)
support for distributed user interfaces; and (iii) seamless distributed storage manage-
ment. Finally, we revisit our scenario, indicating how it can be actually implemented
using our system.

1 http://2wear.ics.forth.gr

 Towards Dynamic and Cooperative Multi-device Personal Computing 183

2 Background and Related Work

The vision of ubiquitous or invisible computing, formulated several years ago by
Marc Weiser (Weiser 1991), has inspired numerous research efforts during the last
years. Work covers a broad spectrum of technical and scientific areas, including wire-
less networks, special purpose devices, embedded sensors, distributed and mobile
computing, runtime and middleware systems, activity recognition, application compo-
sition frameworks, human computer interaction, and security and privacy. It also
crosscuts many application sectors, like the professional and business domain, class-
room and home environments, mission critical computing and healthcare. In the fol-
lowing we put our work in perspective and briefly discuss related work2.

A distinguishing characteristic of the 2WEAR project is its focus on the ad-hoc
combination of several wearable and portable devices to form a single personal com-
puting system. Unlike some major research efforts on mobile, ubiquitous and perva-
sive computing systems (Brumitt et al. 2001; Garlan et al. 2002; Johanson et al. 2002;
Kunito et al. 2006; Roman and Cambell 2000), in our work there is no strong reliance
on a smart infrastructure. By design, applications may reside on different devices, and
devices providing auxiliary resources can be replaced by others to continue operation,
with degraded or enhanced functionality. Infrastructure-based resources found in the
environment can also be exploited in an opportunistic fashion.

Most work on mobile and wearable computing focuses on context acquisition and
activity recognition, ergonomic design or investigates new forms of user interaction
based on special sensors and input/output devices (Amft et al. 2004; Bang et al. 2003;
Gellersen et al. 2002; Krause et al. 2003; Ogris et al. 2005; De Vaul et al. 2003).
However, system configuration is typically fixed, based on a single wearable or port-
able computer, and several peripherals wired to it. 2WEAR takes a largely comple-
mentary approach, targeting a multi-device ad-hoc personal computing environment
whose configuration may change at any point in time. The Spartan Bodynet (Fishkin
et al. 2002) follows a similar approach, letting embedded applications interact with
different wireless peripheral components, but there seems to be little advanced sup-
port in terms of handling a changing device configuration during application execu-
tion. The SoapBox system (Tuulari and Ylisaukko-Oja 2002) employs short-range ra-
dio for the special case of letting wearable sensors communicate in a flexible way
with a central processing node, typically a personal computer or laptop. Pursuing a
somewhat extreme model, the Personal Server system (Want et al. 2002) advocates a
single portable device holding all data and applications, which can be accessed over
wireless via PC-based terminals found in the environment using a web-based proto-
col. However, applications residing on the Personal Server cannot exploit the re-
sources of other wearable and portable devices. The wearIT@work project (Kuladi-
nithi et al. 2004) investigates wearable computing in conjunction with many wireless
devices which may belong to different persons, but focus is mainly on mesh network-
ing issues rather than higher-level forms of application support. Contrary to 2WEAR
and the aforementioned systems, which use radio-based communication, there is also

2 Even though we try to provide indicative references, we most certainly do not give a compre-

hensive survey of work on ubiquitous and wearable computing, which is well beyond the
scope of this article.

184 S. Lalis et al.

significant work on intra-body communication and corresponding user interaction
metaphors, such as “touch and play” (Park et al. 2006).

In terms of service / resource discovery and invocation, our work has common
characteristics with other architectures designed for ad-hoc distributed computing sys-
tems, such as MEX (Lehikoinen et al. 1999) or MOCA (Beck et al. 1999). The main
difference is that we do not commit to a specific programming language, middleware
API or application model. Interoperability is achieved via an open and platform neu-
tral communication protocol and encoding, which can be easily supported in different
languages and runtime environments. Location and distribution (programming) trans-
parency, if indeed desired, is achieved by introducing language- and runtime-specific
libraries and/or proxy objects. Our approach is thus more in the spirit of web tech-
nologies, but we do not use HTTP or XML which introduce considerable overhead.
Some middleware systems, such as PCOM (Becker et al. 2004), provide considerable
support for dynamic service (component) selection and binding at runtime. Our sys-
tem provides similar functionality, but this is specifically tuned for the purpose of
user interface management.

The user interface framework developed in 2WEAR, named Voyager, offers to the
application programmer a library of abstract interactive components that utilize dis-
tributed user interface services hosted by proximate wearable, portable and ambient
devices. Dynamic service discovery, negotiation, synthesis and adaptation occurs in a
transparent fashion to application programmers, hiding all underlying user interface
management details, while ensuring state persistence and automatic dialogue recovery
upon disconnection or device failure. Related work in the area of ubiquitous and
wearable computing is mostly concerned with the design and implementation of am-
bient dialogues, context awareness and adaptive interfaces. For instance, the work re-
ported in (Banget al. 2003) investigates new types of interaction devices suited for
traditional static wearable interactions. The notion of context awareness is related to
ways of sensing information from the physical and computational environment
(Abowd and Mynatt 2000) making a system aware of the context in which it is en-
gaged. However, there are no propositions on how to address the situation where the
context can be the interface as well; like in Voyager. The need to effectively reflect
such awareness in interaction is discussed under the concept of plasticity in (Calvary
et al. 2001), emphasizing the requirement for distributed applications to “withstand
variations of context of use while preserving usability”, but no full-scale development
framework is proposed. There has been work regarding the engineering of context-
aware applications based on re-usable higher-level software elements, called widgets
(Salber et al. 1999). These are responsible to notify the run-time application of vari-
ous types of events occurring in the environment, such as particular activities, or the
presence of persons. The Voyager framework adopts a similar toolkit-based approach
in order to support distributed and adaptive user interfaces. Dynamic adaptation is
also provided in the SUPPLE system (Gajos et al. 2005), but in this case focus is on
the rendering / placement of graphical user interface components on a single display
as a function of its size and user input statistics.

Storage management in 2WEAR is based on a peer-to-peer model where individual
wearable and portable storage devices are viewed as autonomously collaborating and
self-organizing elements. This makes it possible to perform several file management
tasks such as backup, offloading and replication in an automated and asynchronous

 Towards Dynamic and Cooperative Multi-device Personal Computing 185

fashion, requiring little or no explicit user input. Traditional network file systems like
Coda (Satyanarayanan 2002) focus on more conventional client-server interactions.
They support mobile clients and disconnected operation, but assume a single device
per user, typically a laptop. Other ad-hoc file systems (Yasuda and Hagino 2001) al-
low users to flexibly share their data without relying on any infrastructure. The differ-
ence with our approach is that we do not support direct file access over the network.
Programs wishing to read or write a remote file must explicitly create a local copy.
Autonomous data exchange between portable devices is supported in the Proem sys-
tem (Kortuem et al. 2001), by plugging into the system application-specific tasks,
called peerlets. The main difference is that we introduce the basic file transfer func-
tionality at the system level, via asynchronous operations to tolerate slow and inter-
mittent connectivity.

3 Motivating Scenario and System Overview

We begin by giving an example of the envisioned system in operation: “Mary arrives
in City-X. At the airport she is given a city-guide application card, which she acti-
vates and puts in her pocket. She takes a bus downtown to explore the old city center.
The application tracks her position using a GPS integrated in her backpack. Each
time she is close to a site of general interest, a message appears on her wristwatch. At
the click of a button, more information about the site is shown on the display of her
camera, if turned on. She takes pictures using her camera, which are annotated with
the GPS coordinates. When the camera starts running out of space, old images are
offloaded on her wallet. Mary bumps into Jane who also happens to be visiting the
city. They sit at a café and Mary takes out her camera to show Jane the pictures she
took during the day. Meanwhile, the photos are being backed up at her home com-
puter via a nearby access point. Jane expresses her interest in several of them. Mary
marks them for access by Jane who switches on her data wallet. Feeling a bit hungry
they decide to have a bite at a cozy restaurant suggested by the city-guide. Mary pin-
points its location on a map, using the café’s table-display to view a large part of the
map in detail. As they walk down the road, Jane’s wallet silently copies the selected
pictures from Mary’s camera.” This short scenario already illustrates the potential
wealth of interactions between devices that are carried by persons or encountered in
the surrounding environment. It also suggests that such a computing system exhibits
several key properties, briefly listed below:

The system is inherently distributed and heterogeneous. Different functions and re-
sources are provided by various devices and artifacts. For instance, the city-guide ap-
plication uses resources provided by other devices such as the GPS, the wristwatch
and the table-display of the café, and the camera uses the GPS to annotate pictures
and the wallet to store them.

The system is extensible and adaptive. New devices can be dynamically added or
removed, and applications adapt their behavior as a function of resource availability.
For example, the city-guide can be controlled via the wristwatch or the camera con-
trols, and can display the map on the camera or table-display. Also, applications ex-
ploit the storage capacity of nearby devices and file backup is performed when close
to an access point.

186 S. Lalis et al.

The system is largely autonomous. Most system-level interactions remain invisible
and adaptation seldom requires explicit input. For example, the city-guide application
automatically adapts to changing user interface resource availability (wristwatch vs
camera resources), and data transfers between the camera, Mary’s wallet, Mary’s
home computer and Jane’s wallet are performed behind the scenes.

In pursuit of this vision, we have implemented our system according to the archi-
tecture, shown in Figure 1. At the low level, basic communication and discovery func-
tionality is provided so that programs may access the resources that are available at any
point in time; contributed to the system by the nearby devices and infrastructure. On top
of it, more advanced functionality is provided in the form of a “vertical” exploitation of
particular resources to relieve the application from having to deal with the details of a
(changing) underlying system configuration. We have investigated two separate aspects
which we felt were of particular importance, namely distributed user interface and stor-
age management, which are actively supported via corresponding mechanisms. No at-
tempt was made to implement this functionality in the form of a common middleware
or API. Instead, project partners were free to choose their own level and flavor of
support, depending on the characteristics of their development platform.

Our system prototype includes custom hardware (Majoe 2003), such as an embed-
ded GPS, a wristwatch with a small display and four buttons, and a small wearable
computer with no user interface elements (see Figure 2). The latter is used as a generic
data and computation “brick”, which may host a variety of subsystems and applications;

Fig. 1. Overview of the 2WEAR system architecture: arrows show the main control flow (invo-
cation direction) between the various subsystems; the dotted line separates between client- and
server-related functionality

 Towards Dynamic and Cooperative Multi-device Personal Computing 187

Fig. 2. Custom-made prototype devices

a personal system may include several such bricks, e.g. with different functionality
assigned to each one of them. PDAs and laptops are also used to emulate other de-
vices, such as a digital camera or a large public display and keyboard. Ad-hoc com-
munication is implemented using Bluetooth radio (Bhagwat 2001)3

We note that the runtime setup is not necessarily the same for all devices. Special-
purpose peripheral devices, such as the GPS and the wristwatch, have a minimal dis-
covery and communication functionality installed in order to make their resources
available to the system. On the other hand, the wearable computer (brick) or a PDA may
be equipped with the full-fledged 2WEAR functionality to support local applications.
Between these extremes, a device may only feature the storage management or user
interface management subsystem, depending on its role and application requirements.

4 Open and Flexible Communication Framework

The envisioned system includes many heterogeneous devices which interact with each
other in an ad-hoc fashion. Thus a key problem is to implement interoperable discovery
and access, while catering for the significant differences in the computing resources of
the various embedded, portable and infrastructure-based platforms. This is achieved via
an open and flexible communication framework, described in the following.

4.1 Remotely Accessible Resources as Services

Interaction between devices follows a service-oriented approach. The concept of a
service is used to denote a distinct resource or functionality that is accessible to re-
mote clients over the (wireless) network. Any device may export a service to its envi-
ronment and, conversely, invoke services being provided by other devices. The notion
of a service in no way predetermines its implementation, and in this sense is orthogo-
nal to the notion of a hardware or software component. Applications can, but do not
have to, use services exported by devices, and may also provide services themselves.

3 Bluetooth was chosen primarily because (at that time) it was the only mature short-

range ad-hoc radio technology, with rudimentary support for most operating systems,
including Windows and Linux.

188 S. Lalis et al.

Services are categorized using an open type system. Each service type is identified
via a unique name, associated to: (i) a set of attributes; (ii) an access protocol; and (iii)
a description document, which gives the semantics of the service attributes and access
protocol. Attributes have as values ASCII strings. If it is desired to constrain an at-
tribute value, the allowed expressions must be specified in the corresponding service
description document. Service providers must supply a value for each attribute, i.e.
specify a concrete service descriptor, and adhere to the respective access protocol.
This concept is illustrated in Figure 3.

Fig. 3. A wristwatch device providing a TextDisplay service

4.2 Syntax-Based Protocols

Service access protocols are defined as formal languages that govern the data ex-
change between an entity invoking a service (client) and an entity implementing it
(provider). The corresponding grammar is given using the Extended Backus-Naur
Formalism (EBNF) (Wirth 1977) with some modifications.

Each protocol is specified as a set of productions that take the form <name> “=”
<expression> “.”, where <name> is the label of the production, and <expression> is
an expression built out of labels, operators and tokens. There are five operators: (1)
concatenation, denoted by a space character; (2) alternative, denoted by “|”; (3) group-
ing, denoted by “(” “)”; (4) option, denoted by “[” “]”; and (5) repetition, denoted by
“{” “}”. Labels occurring in expressions refer to productions whereas tokens refer to
elements of the underlying alphabet4. To capture the bidirectional nature of communi-
cation, we augment the symbols appearing in expressions by a direction mode, de-
noted by normal and underlined text, indicating whether tokens travel from the client
towards the provider or vice versa.

4 Although tokens are the atoms that any production can finally be resolved into, their values

need not be single bytes or characters; see token types.

 Towards Dynamic and Cooperative Multi-device Personal Computing 189

The basic set of token types is listed in Table 1. Constants are given in the form of
literals with an optional type cast to alleviate ambiguities. As we found that the exten-
sive use of constants severely compromises the readability of protocol definitions, we
introduce special symbols referred to as keywords. These are defined using an enu-
meration-like production, and are (per definition) mapped to consecutive natural num-
bers starting from zero. Since tokens are issued over a network, a corresponding type-
safe serial encoding was also specified.

Table 1. The token types of the 2WEAR protocol syntax

Token name Description

CHAR ASCII character
STRING Sequence of ASCII characters (zero terminated)
INTEGER Integer (variable value-based length encoding)
BOOLEAN Boolean
UUID Universal unique identifier
BBLOCK Byte block (length is specified as a prefix)
KEYWORD Symbolic names

Listing 1 gives a few indicative examples. The TextDisplay protocol defines a trans-
action for writing an ASCII character at a given column and row, and receiving a fail-
ure/success feedback. The Alarm protocol describes a notification transaction, for set-
ting a threshold and then continuously receiving (several) values. The RequestReply
protocol defines a generic exchange of STRING tokens whose contents are left
“open”, thus can be used as a tunnel for higher-level scripting protocols. The Teller
protocol specifies a simple e-banking dialog.

TextDisplay = {WriteChar}.
WriteChar = CHAR Column Row BOOLEAN.
Column = INTEGER.
Row = INTEGER.

Alarm = Threshold {Value}.
Threshold = INTEGER.
Value = INTEGER.

RequestReply = STRING STRING.

Teller = Login Password [OK {Action} | NOK].
Action = Balance | Deposit | Withdraw.
Balance = BALANCE INTEGER.
Deposit = DEPOSIT INTEGER [OK | NOK].
Withdraw = WITHDRAW INTEGER [OK | NOK].
Login = UUID.
Password = INTEGER.
Keywords = BALANCE DEPOSIT WITHDRAW OK NOK.

Listing 1. Indicative syntax-based protocol definitions

190 S. Lalis et al.

This formal approach enables a protocol specification to be used as a syntactic con-
tract between developers who implement service clients and providers in a decoupled
fashion. In addition, a wide range of interaction schemes, which go well beyond a sim-
ple request-reply pattern, can be expressed in a straightforward manner. Note however
that the service-related semantics associated with a protocol cannot be inferred from
its syntax and must be specified in the corresponding description document.

Protocol definitions are independent from programming languages and runtime
systems, so that developers are free to design and implement the primitives that are
most suitable for their system. Indeed, the flavour and level of application program-
ming support in 2WEAR varied significantly, ranging from simple templates used to
produce efficient monolithic code for embedded devices, to libraries providing gen-
eral-purpose communication facilities (and protocol parsers) for different operating
systems and languages. The minimal requirement for the transport layer on top of
which such communication mechanisms can be developed is the ability to exchange
bytes in a semi-duplex and reliable fashion. In our prototype implementations, Blue-
tooth L2CAP was used as the underlying transport mechanism5.

4.3 Service Discovery

We advocate a multi-device personal computing system whose configuration can be
changed at any point in time and in an out-of-the-loop fashion, i.e. without devices be-
ing explicitly notified about it by the user. Programs wishing to exploit the services
provided by remote devices must therefore be able to detect them at runtime.

Service discovery is implemented as a two-step procedure. In the first step, the
wireless ad-hoc network is searched for new devices. This is done by employing the
native Bluetooth discovery (inquiry) mechanism. When a device is detected, in a sec-
ond step, it is queried about the services it provides via the so-called Home protocol,
which allows a client to specify the desired service types and / or attribute value(s) in
order to receive the respective contact (port) information. The Home protocol is quite
similar to other client-driven discovery protocols, like Salutation (Pascoe 2001). The
main difference is that it is defined as a proper syntax-based protocol, hence can be
invoked using the standard 2WEAR communication facilities.

Just like any service-level access, the Home protocol requires the establishment of
a (L2CAP) transport connection, which consumes energy and network resources. This
is done in vain if the target device does not provide any service of interest to the que-
rying party. As an optimization, we exploit the class-of-device (CoD) field of Blue-
tooth inquiry packets to encode service provision hints. This makes it possible to infer
which types of services are not provided by a discovered device, without employing
the Home protocol; which seemed to considerably enhance service discovery as well
as the overall network connectivity, especially in the presence of many devices. Fi-
nally, device and service discovery information is cached locally to eliminate frequent
querying over the network. Entries have an expiration time which is renewed when-
ever the remote device shows signs of existence. It is nevertheless possible for a

5 We also developed a TCP/IP “adapter” in order to perform initial interoperability tests be-

tween the programs of different partners over the Internet, before deploying code on the
various portable and wearable devices.

 Towards Dynamic and Cooperative Multi-device Personal Computing 191

program to receive outdated information. This can be explicitly invalidated upon an
unsuccessful attempt to contact the service.

5 Dynamically Distributed User Interfaces

The ad-hoc nature of the envisioned system leads to an unusually dynamic and het-
erogeneous environment in terms of user interaction resources. In general, as illus-
trated in Figure 4, it is possible to differentiate among two layers of interaction-
capable devices: inner layer wearable devices, which the user may or may not carry,
depending on the situation; outer layer environment devices that fall inside the com-
munication range of the user’s portable / wearable computing system. Wearable de-
vices are typically owned by the user and do not vary significantly while on-the-
move. On the contrary, environment devices are part of the physical infrastructure,
thus their availability is expected to vary as the user changes location.

Ideally, applications should be constructed in a way that facilitates the dynamic
exploitation of the proximate interaction-specific devices which are available at any
point in time, without requiring extensive programming effort. Research and devel-
opment work towards accomplishing this goal has resulted in the delivery of the Voy-
ager framework, which provides considerable development support for dynamically
distributed user interfaces, built on top of the discussed communication framework.

Fig. 4. Dynamically engaged ambient computing resources in mobile interactions

5.1 The UI Service Protocols

Due to the large diversity of user interface resources that can be provided by the vari-
ous devices, it was mandatory to prescribe a common protocol that would be applica-
ble to all possible UI service classes. Additionally, the protocol should allow pro-
grammers to detect and exploit on-the-fly any particular non-standard features offered
by discovered devices. To this end, interaction with UI services occurs via three basic
protocols: (i) the control protocol, (ii) the input protocol, and (iii) the output protocol.
Slightly simplified definitions of these protocols are given in Listing 2.

192 S. Lalis et al.

Control = {GetP} [ACQ [OK {Main} RLS | NOK].
Main = GetP | SetP.
GetP = GETP PropId PropVal.
SetP = SETP PropId PropVal BOOLEAN.
PropId = STRING. /* scripting */
PropVal = STRING. /* scripting */
Keywords = ACQ RLS GETP SETP ACK OK NOK.

Input = INPUT {InEventId InEventVal}.
InEventId = STRING. /* scripting */
InEventVal = STRING. /* scripting */
Keywords = INPUT.

Output = OUTPUT {OutEventId OutEventVal BOOLEAN}.
OutEventId = STRING. /* scripting */
OutEventVal = STRING. /* scripting */
Keywords = OUTPUT.

Listing. 2. The basic UI protocols

The control protocol describes the communication for acquiring, releasing and check-
ing the availability of a UI resource. It also allows clients to determine, query and
modify the so-called properties of a resource. The input and output protocols dictate
the reception of user input events from a UI resource and the issuing of user output
events towards a UI resource, respectively. Every distinct UI resource is expected to
support the control protocol, as well as the input and/or output protocol, depending on
its type.

It is important to note that property / event identifiers and values are defined as
STRING tokens, hence are open to definition and interpretation by service providers
and application programmers. This makes it possible to accommodate extended intro-
spection and parameterization functionality as well as to exploit the special UI capa-
bilities of devices in a flexible way, without breaking the basic UI protocols. Of
course, this introduces an additional level (or dimension) of service meta-information
that must be appropriately documented by service providers and consulted by applica-
tion developers. Some sort of coordination is also needed to ensure that identical
STRING identifiers of properties and event classes actually imply identical semantics
and compatible corresponding content-value expressions across all UI service imple-
mentations.

5.2 Primitive UI Services

Several UI resources, exported as corresponding UI services, were developed to pro-
vide rudimentary distributed input / output functionality: Button (input); Keyboard
(input); TextDisplay (output); TextLine (output); GraphicsDisplay (output); Menu
(input and output); TextEditor (input and output). Their functionality is summarized
in Table 2. The access protocol for each UI service is defined by refining the basic UI
protocols in a suitable way. In addition, to simplify programming, appropriate client-
side APIs were implemented that hide the underlying discovery and communication
process. For certain UI services several alternative implementations were provided on

 Towards Dynamic and Cooperative Multi-device Personal Computing 193

different wearable and portable platforms, while others had to be emulated6 on laptops
and PCs.

Most of the UI service abstractions correspond to primitive input or output func-
tionality, which are likely to be found in small wearable and embedded devices. How-
ever, services such as the Menu and the TextEditor encapsulate both input and output
functions in a single unit. This reflects the situation where a device may provide ad-
vanced interactive behavior as a built-in feature. For instance, home appliances such
as TVs employ menu-based dialogues, using their screen for output and their remote
control unit for input. Thus it would be possible to export this UI functionality in the
form of a distinct UI service, such as the Menu, which can be discovered and ex-
ploited by remote applications.

Table 2. The UI services

UI service type UI mode Functionality
Button Input receive button events
Keyboard Input receive key press events with key code
TextDisplay Output display a character at a given column & row
TextLine Output display a character at a given position
GraphicsDisplay Output display a bitmap
Menu Input/Output display list of textual options and receive as a

result the choice of the user as a number
TextEditor Input/Output display text for (offline) editing and receive as

a result a new text

5.3 Higher Level UI Management Support

Primitive UI services provide the basic functionality which can be used to implement
a wide range of user interfaces. However, the application programmer is responsible
for discovering the available services and combining them together to form meaning-
ful interaction styles. Also, failure to communicate with a remote UI service must be
handled, e.g. by replacing it with another available service of equivalent or similar
functionality. Due to the inherently dynamic nature of the system, this becomes a
commonly expected case rather than an exceptional situation, reflecting the need to
accommodate dynamic UI re-configuration and deliver a persistent interaction through-
out application execution.

To effectively provide such functionality at the application level, high-level dia-
logue abstractions were developed, taking into account the characteristics of small
devices with restricted UI capability and relatively slow wireless communication. The
adopted technique is based on virtual interaction objects supporting polymorphic plat-
form bindings (Savidis 2005). For the purpose of the 2WEAR project, two generic
dialogue object classes were introduced: (i) the Selector, allowing the user to select
from an explicit list of displayed textual options; (ii) the TextEntry, enabling the user
to enter / edit textual input. The application may employ an arbitrary number of such
instances, but only one dialogue object instance may own the focus of user interaction
at any point in time (i.e. a single focus object policy).

6 All primitive UI services were emulated on a desktop environment to perform initial tests of

the framework without relying on wearable / portable hardware.

194 S. Lalis et al.

Selector
Dialogue Object

Text Entry
Dialogue Object

Selector
Input StyleSelector

Input StyleSelector
Input Style

Selector
Input StyleSelector

Input StyleSelector
Output Style

Selector
Input StyleSelector

Input StyleText Entry
Input Style

Selector
Input StyleSelector

Input StyleText Entry
Output Style

Selector
Input StyleSelector

Input StyleInput
UI ServiceInput

UI Service

Selector
Input StyleSelector

Input StyleInput
UI ServiceOutput

UI Service

Abstract dialogue
objects

Alternative implemented
I/O styles

Physical UI service
control

Selector
Dialogue Object

Text Entry
Dialogue Object

Selector
Input StyleSelector

Input StyleSelector
Input Style

Selector
Input StyleSelector

Input StyleSelector
Input Style

Selector
Input StyleSelector

Input StyleSelector
Output Style

Selector
Input StyleSelector

Input StyleSelector
Output Style

Selector
Input StyleSelector

Input StyleText Entry
Input Style

Selector
Input StyleSelector

Input StyleText Entry
Input Style

Selector
Input StyleSelector

Input StyleText Entry
Output Style

Selector
Input StyleSelector

Input StyleText Entry
Output Style

Selector
Input StyleSelector

Input StyleInput
UI ServiceInput

UI Service

Selector
Input StyleSelector

Input StyleInput
UI ServiceInput

UI Service

Selector
Input StyleSelector

Input StyleInput
UI ServiceOutput

UI Service

Selector
Input StyleSelector

Input StyleInput
UI ServiceOutput

UI Service

Abstract dialogue
objects

Alternative implemented
I/O styles

Physical UI service
control

Fig. 5. Implementation structure for abstract (distributed) dialogue objects

Output style “Notepad Text Display”,
as running with the Text Display
UI Service of an iPAQ™ NotepadOutput style “WW Text Display”,

as running with the Text Display
UI Service over the MASC Wristwatch

Input style “WW Buttons”,
as running with four Button

UI Services of the MASC Wristwatch

Input style “Keyboard”,
as running with Keyboard
UI Service over an iPAQ™

Input style “Keyboard”,
as running with Keyboard
UI Service over WNT PC

Output style “Public Text Display”,
as running with the Text Display

UI Service over a WNT PC

Output style “Notepad Text Display”,
as running with the Text Display
UI Service of an iPAQ™ NotepadOutput style “WW Text Display”,

as running with the Text Display
UI Service over the MASC Wristwatch

Input style “WW Buttons”,
as running with four Button

UI Services of the MASC Wristwatch

Input style “Keyboard”,
as running with Keyboard
UI Service over an iPAQ™

Input style “Keyboard”,
as running with Keyboard
UI Service over an iPAQ™

Input style “Keyboard”,
as running with Keyboard
UI Service over WNT PC

Output style “Public Text Display”,
as running with the Text Display

UI Service over a WNT PC

Fig. 6. Three alternative output (top) and input (bottom) styles for the Selector, based on differ-
ent implementations of primitive UI services on various devices

These object classes encapsulate appropriate runtime control logic for the dynamic
handling of UI services to achieve dynamic UI reconfiguration. This is accomplished
through the implementation of alternative dialogue input and output control policies,
also referred to as instantiation styles, as illustrated in Figure 5. Each style relies on a
specific combination of UI services, and encompasses the code for managing its basic
input / output functionality. Different input and output styles can be orthogonally com-
bined to produce a large number of plausible physical instantiations for a given dialogue

 Towards Dynamic and Cooperative Multi-device Personal Computing 195

object class. As an example, Figure 6 shows various styles that have been imple-
mented for the Selector dialogue.

At runtime, the application may interact with the user as long as there are adequate
UI services to support at least one input and one output style for the focus dialogue
object. Else, the dialogue enters a stalled state, where it is attempted to discover new
UI services in order to make at least one input and output style of the focus dialogue
viable. In this case, the dialog reverts back to working state and user interaction is re-
sumed.

UI service discovery is also possible when the application is in working state. This
may enable additional I/O styles for the focus dialogue object, thus creating the op-
portunity to reconfigure a dialogue in the midst of user interaction. In order to control
system behavior, the user can specify whether such on-the-fly optimization is desirable
and introduce priorities between dialog instantiation options (different preferences can
be given for each application). Table 3 summarizes the UI reconfiguration logic.

Table 3. Outline of the algorithms for UI re-configuration behavior, upon UI service discovery
or loss, depending on the current dialogue state

 working stalled

UI service
discovery

(optimization round)
if UI optimization is enabled and
a preferable instantiation be-
came viable, deactivate the cur-
rent instantiation and activate
the new one

(revival round)
if one or more instantiations be-
came viable, select the most pre-
ferred one, set the dialogue state
to running and activate the new
instantiation

UI service
loss

if the lost service is used by the
current instantiation, deactivate
the current instantiation, set the
dialogue state to stalled and per-
form a revival round

do nothing (it is impossible that
an instantiation became viable
with less resources than before)

The state of user interaction is centrally kept within the application’s dialogue object
instances. It is updated each time an input event is received from a remote UI re-
source, associated to its current input style, before communicating the effects back to
the user via the respective the UI output resource of its current output style. More
specifically, the Selector object records the option the user has focused on, while the
TextEntry object records the text entered by the user and the current cursor position.
This separation between remote input / output and application-resident processing
with support for state maintenance is illustrated in Figure 7.

Since the dialogue objects and styles reside within the application, this state is pre-
served locally even if the communication with the dynamically employed (remote) UI
services fails. As a consequence, when a dialogue object instance is resumed / recon-
figured using a new input / output style and / or new corresponding UI services, these
can be properly initialized to reflect the last state of the dialogue.

A special application, called the Application Manager, is used to initiate, terminate
and give focus to other applications. Even though several applications may be running
concurrently to each other, only one may own the application focus (i.e. a single focus

196 S. Lalis et al.

Fig. 7. Input / output processing of abstract dialogue objects; arrows indicate typical

application policy). Newly started applications are initialized in a suspended state,
where no attempt is made to discover or allocate UI resources on their behalf. This is
done only when an application receives focus, in which case a revival round is per-
formed for its focus dialog object (see Table 2). The application then enters a working
or stalled state, depending on the current availability of UI services. Conversely, when
an application gives away the focus, it falls back to the suspended state, and the UI
services allocated to its dialogue objects are released so that they can be used for the
application that will receive the focus next.

6 Seamless Distributed Data Management

Data management becomes a key issue in a personal system that comprises many
wearable and portable devices. Already today, the data that can be generated on the
move, at the click of a button, can grow to exorbitant numbers. This imminent data
explosion along with the fact that the number of personal devices used to generate,
store and access data is most likely to increase in the future, aggravates the problem
of data management. It quickly becomes clear that the conventional and already
awkward model of moving data between devices via explicit and synchronous user
commands does not scale. Even less so for embedded and mobile computing envi-
ronments where devices have a limited user interface and user attention should be
preserved.

With this motivation we developed a file-based7 data management facility which
turns storage devices into proactive self-organizing elements. This approach makes it
possible to support several tasks in a largely automated way, requiring little or no ex-
plicit user input. For instance, we let wearable and portable devices collaborate with
each other in an ad-hoc manner to copy or exchange files. Also, files generated on
portable devices are forwarded via the Internet to a reliable storage service, referred to
as the repository.

7 This work focuses on (data) files generated by the user, rather than binaries and internal

system and application-specific configuration files. We also assume, even though this is not
enforced by our implementation, that files are immutable (Schroeder et al. 1985), i.e. files
with the same name are guaranteed to have identical contents.

 Towards Dynamic and Cooperative Multi-device Personal Computing 197

6.1 Architecture and Implementation Overview

The storage facility is implemented as a set of components which reside on personal
and infrastructure devices and interact with each other to achieve the desired func-
tionality. Figure 8 depicts a personal area network with two personal devices, a cam-
era and a wearable brick (as a storage wallet), close to an access point through which
the repository can be reached.

Portable and wearable storage devices run the storage daemon, a process that is re-
sponsible for performing the necessary interactions with other devices as well as with
the repository. Applications running on portables use the storage library API to in-
voke the storage daemon8. The functionality of the repository is implemented via the
repository daemon that handles requests received from remote storage daemons.

Finally, the gateway daemon acts as a network and protocol gateway, allowing
portable devices to communicate with services that reside in the Internet, such as the
storage daemon. The gateway daemon can be installed on any device (e.g. our wear-
able computer equipped with a GPRS modem) or infrastructure element (e.g. a PC
plugged on an Ethernet network) that features a network interface through which
Internet connectivity can be provided. The communication between the storage, re-
pository and Internet access daemons is implemented using the basic 2WEAR com-
munication mechanisms.

Fig. 8. The storage management architecture

6.2 Archival

The backup process is performed asynchronously behind the scenes with minimal ef-
fort on behalf of the application programmer. The storage library provides a backup

8 Some devices may act as “pure” storage data carriers, in which case they feature the device

daemon without the device library or any local application.

198 S. Lalis et al.

operation to initiate backup for a given file. The backup status of a file can then be
examined via the isbackedup operation.

The storage daemon maintains internally a queue of references to local files that
need to be transferred to the repository. As long as this list is not empty, it periodi-
cally attempts to discover a gateway through which it can contact the repository dae-
mon. When such a connection is eventually established, the storage daemon com-
mences data transfer until all files have been successfully backed up at the repository.

Each entry of the backup queue is processed as follows. First, the file identifier
(name) and size is sent to the repository daemon, which records this information and
replies with a list of offset-length pairs indicating the missing file fragments. The
storage daemon proceeds by sending the requested parts to the repository daemon.
This is repeated until the repository replies with an empty fragment list, indicating
that the entire file is safely stored, in which case backup proceeds with the next entry.

The transfer protocol is designed to support incremental data transfer on top inter-
mittent connectivity, which is typical for mobile and ad-hoc computing environ-
ments9. As a result, if the connection with the repository breaks and is later re-
established, backup continues from the last fragment that was successfully received
by the repository. Notably, an interrupted backup process can be resumed via another
device holding a copy of the same file. If several devices concurrently attempt to
backup the same file, the repository daemon will request different file fragments from
each one of them, thereby achieving parallel backup.

6.3 File Collection, Offloading, and Replication

The storage daemon automatically creates free space on devices when storage is fill-
ing up. Reclamation is driven by two parameters10: the minimum free ratio (MFR) and
the desired free ratio (DFR). When free space drops below the MFR, the device dae-
mon attempts to remove local files. Candidates for deletion are the least recently ac-
cessed files that have been successfully backed up in the repository. Garbage collec-
tion stops when the DFR is reached.

It is however possible that the DFR cannot be met given the above restrictions. As
a last resort option, the storage daemon attempts to offload a file on another device,
which will assume responsibility for backing it up to the repository. When such a de-
vice is found, data transfer between the two storage daemons occurs employing a pro-
tocol that is almost identical to the backup protocol; making it possible to tolerate fre-
quent disconnections. Notably, the receiving daemon is free to collect file fragments
of an interrupted transfer at any point in time. The sending daemon may remove the
file only if it was successfully received by another device.

As a special case of offloading, the storage daemon may copy a file on another de-
vice without removing it locally. Replication is meaningful if it is desirable to in-
crease the availability of a file within the personal area network. Applications can
specify the number of copies that should be created on different devices via the se-
treplicas operation.

9 This is even more likely to occur in our system, since communication is implemented using a

short-range radio technology.
10 We assume these values as given. In practice, these could be set using a configuration tool or

adjusted automatically using a meaningful system policy.

 Towards Dynamic and Cooperative Multi-device Personal Computing 199

6.4 PAN-Wide File Access and Dissemination

The storage facility does not automatically provide a unified and up-to-date file sys-
tem view for all neighboring devices. To implement this, it would have been required
to frequently exchange file information between co-located storage daemons, con-
suming a significant amount of CPU time, bandwidth and energy. Instead, we decided
to provide basic primitives that can be combined under application control to achieve
similar functionality.

Local files that are to be made visible to applications residing on remote devices
need to be specified in an explicit way. This is done using the setexport operation,
which marks a file so that its existence can be determined by remote storage daemons.
Export entries can be given a lifetime and are removed by the storage daemon upon
expiration. If no lifetime is specified, the export status of a file must be revoked via
setexport. To declare its interest in remote files, a program registers with the storage
library a lookup expression and notification handler. As a result, the storage daemon
starts to periodically query nearby devices for exported files that match this expres-
sion. In case of a match, the corresponding programs are notified by invoking their
registered handler routine.

Programs access local files via the standard open, read, write and close opera-
tions. Direct access is not supported for remote files (that have been discovered via
the via the lookup mechanism). If a program wishes to access a remote file, it must
create a local copy via the fetch operation of the storage library. The corresponding
data transfer over the network is performed in the background by the storage dae-
mon, following the same protocol as for file replication, in the reverse direction. If
the connection breaks, data transfer may be resumed, also by redirecting the request
to another device that has a copy. Fetch operations are given an allowable silence
period, indicating the maximum amount of time for establishing contact with a de-
vice that can provide the target file. If the storage daemon fails to commence or re-
sume transfer within this period, it aborts the fetch operation and deletes the corre-
sponding file fragments.

Listing 3 gives sample code for fetching all .jpg images found on nearby devices
with a silence threshold of 5 minutes. The same mechanism is used to disseminate
files of public / common interest to other people, e.g. family, friends and colleagues.
The difference is that the interacting devices do not belong to the same person. Rather
than introducing yet another operation, the existing setexport operation was extended
to take an additional (optional) parameter, indicating the persons for which the file
should be made visible. In our prototype implementation people are identified via
unique UUID values, and devices provide the UUID of their owner via the Home pro-
tocol11. A special value is reserved to indicate “any person”; files exported using this
value become accessible to all devices. Fully automated yet controlled file dissemina-
tion can thus be easily achieved between devices that belong to different people: the
provider needs to export the desired files, and the receiver must run in the background
a simple program in the spirit of Listing 3.

11 This work does not address the various security issues that arise in this context.

200 S. Lalis et al.

void notifier(char *fname, char *location) {
 printf("file %s was found\n", fname);
 printf("let’s copy it locally!\n");
 fetch(location, fname, "/mypicts/" , 60*5);
}

int ld;

ld = registerLookup("*.jpg", notifier);
…
unregisterLookup(ld);

Listing 3. Registering a lookup task for fetching remote .jpg files found

7 Putting the Pieces Together

Returning to the scenario given in the beginning of this article, we outline how it can
be realized using the features of the 2WEAR system. Figure 9 depicts the correspond-
ing interactions that (may) take place between the various devices, applications, sub-
systems and services. The communication and discovery subsystem is not shown to
avoid cluttering the picture.

Peripheral devices, like the GPS, the wristwatch and the table-display (emulated on
a laptop), make their particular resources available to other devices in the form of cor-
responding services, such as GPSLocation, TextDisplay, Button and GraphicsDisplay.

Similarly, the camera (emulated on a PDA) exports a GraphicsDisplay and Menu
service. In addition, it features a local photo application that exploits the storage man-
agement subsystem to back up new images on the repository, offload old images on

Fig. 9. Distribution of functionality and main interactions for our scenario

 Towards Dynamic and Cooperative Multi-device Personal Computing 201

the user’s storage wallet (brick), or let images be transferred to a storage wallet
(brick) of another person. The application also periodically searches for a GPSLoca-
tion service which, if found, is used to annotate the photos taken with geographical
coordinates.

The city-guide card (brick) comes with an embedded application that takes advan-
tage of the user interface management subsystem. As a consequence, the application
can be controlled via the wristwatch and/or camera user interface elements. It is pos-
sible to switch between the two configurations at runtime, via user selection or auto-
matic adaptation (when a device is switched off or goes out of range). The map of the
city can be optionally rendered on any available GraphicsDisplay service, under user
control. Finally, the city-guide application employs a GPSLocation service to track
user movement and issue a notification when approaching a landmark.Of course, this
scenario and proposed functional arrangement is merely indicative; and by no means
optimal in terms of device affordances or user interaction. We nevertheless believe
that it illustrates the potential of the envisioned system as well as the level of applica-
tion support that has been implemented to simplify development in such a setting.

8 Summary

In the 2WEAR project we have explored the paradigm of cooperative multi-device
personal computing, where different wearable, portable and infrastructure elements
communicate with each other in an ad-hoc fashion. The physical decoupling of the
elements that form the system results in great flexibility, making it possible for the
user to change its configuration in a simple way and at any point in time. However, it
is precisely due to this dynamic nature of the system that makes the exploitation of the
distributed available resources difficult. An additional challenge is to achieve this
without forcing the user to (continuously) provide input to the various devices of the
system in an explicit manner. Towards this objective, advanced mechanisms were de-
veloped on top of an open communication and discovery framework, which address
key issues of distributed user interface and storage management on behalf of the ap-
plication programmer.

For the interested reader, a more elaborate introduction of the syntax-based proto-
cols is given in (Gutknecht 2003). The UI framework is described in detail in (Savidis
and Stephanidis 2005a; Savidis and Stephanidis 2005b). Finally, work on different
aspects of core runtime support for personal area network computing and a more up-
dated version of the storage management facility is reported in (Karypidis and Lalis
2005) and (Karypidis and Lalis 2006), respectively.

Acknowledgements

This work was funded in part through the IST/FET program of the EU, contract nr.
IST-2000-25286.

202 S. Lalis et al.

References

Amft, O., Lauffer, M., Ossevoort, S., Macaluso, F., Lukowicz, P., Troester, G.: Design of the
QBIC wearable computing platform. In: Proceedings 15th IEEE International Conference
on Application-Specific Systems, Architectures and Processors, Texas, USA, IEEE, Los
Alamitos (2004)

Abowd, G., Mynatt, E.: Charting Past, Present, and Future Research in Ubiquitous Computing.
ACM Transactions on Computer-Human. Interaction 7(1), 29–58 (2000)

Bang, W., Chang, W., Kang, K., Choi, W., Potanin, A., Kim, D.: Self-contained Spatial Input
Device for Wearable Computers. In: Proceedings7th IEEE International Symposium on
Wearable Computers, NY, USA, pp. 26–34. IEEE Computer Society Press, Los Alamitos
(2003)

Bhagwat, P.: Bluetooth: Technology for Short-Range Wireless Applications. IEEE Internet
Computing 5(3), 96–103 (2001)

Beck, J., Gefflaut, A., Islam, N.: MOCA: A Service Framework for Mobile Computing De-
vices. In: Proceedings 1st ACM International Workshop on Data Engineering for Wireless
and Mobile Access, Seattle, USA, pp. 62–68. ACM Press, New York (1999)

Becker, C., Handte, M., Schiele, G., Rothermel, K.: PCOM - A Component System for Perva-
sive Computing. In: Proceedings 2nd IEEE International Conference on Pervasive Com-
puting and Communications, Florida, USA, pp. 67–76. IEEE Computer Society Press, Los
Alamitos (2004)

Brumitt, B., Meyers, B., Krumm, J., Kern, A., Shafer, S.: EasyLiving: Technologies for Intelli-
gent Environments. In: Thomas, P., Gellersen, H.-W. (eds.) HUC 2000. LNCS, vol. 1927,
pp. 12–29. Springer, Heidelberg (2000)

Calvary, G., Coutaz, J., Thevenin, D., Rey, G.: Context and Continuity for Plastic User Inter-
faces. In: Proceedings I3 Spring Days Workshop on Continuity in Future Computing Sys-
tems, Porto, Portugal, CLRC, pp. 51–69 (2001)

Fishkin, K.P., Partridge, K., Chatterjee, S.: Wireless User Interface Components for Personal
Area Networks. IEEE Pervasive Computing 1(4), 49–55 (2002)

Gajos, K., Christianson, D., Hoffmann, R., Shaked, T., Henning, K., Long, J.J., Weld, D.: Fast
And Robust Interface Generation for Ubiquitous Applications. In: Proceedings 7th Interna-
tional Conference on Ubiquitous Computing, Tokyo, Japan, pp. 37–55 (2005)

Garlan, G., Siewiorek, D., Smailagic, A., Steenkiste, P.: Project Aura: Toward Distraction-Free
Pervasive Computing. IEEE Pervasive Computing 1(2), 22–31 (2002)

Gellersen, H.G., Schmidt, A., Beigl, M.: Multi-Sensor Context Awareness in Mobile Devices
and Smart Artifacts. Mobile Networks and Applications 7(5), 341–351 (2002)

Gutknecht, J.: A New Approach to Interoperability of Distributed Devices. In: Stephanidis, C.
(ed.) Universal access in HCI: inclusive design in the information society, pp. 384–388.
Lawrence Erlbaum, Mahwah (2003)

Johanson, B., Fox, A., Winograd, T.: The Interactive Workspaces Project: Experiences with
Ubiquitous Computing Rooms. IEEE Pervasive Computing 1(2), 67–74 (2002)

Karypidis, A., Lalis, S.: Exploiting co-location history for efficient service selection in ubiqui-
tous computing systems. In: Proceedings 2nd International Conference on Mobile and
Ubiquitous Systems, San Diego, USA, pp. 202–209. IEEE Computer Society Press, Los
Alamitos (2005)

Karypidis, A., Lalis, S.: Omnistore: A system for ubiquitous personal storage management. In:
Proceedings 4th IEEE International Conference on Pervasive Computing and Communica-
tions, Pisa, Italy, pp. 136–146. IEEE Computer Society Press, Los Alamitos (2006)

Kortuem, G., Schneider, J., Preuitt, D., Thompson, T.G.C., Fickas, S., Segall, Z.: When Peer-
to-Peer comes Face-to-Face: Collaborative Peer-to-Peer Computing in Mobile Ad-Hoc
Networks. In: Proceedings 1st International Conference on Peer-to-Peer Computing, Lin-
koping, Sweden, pp. 75–94 (2001)

 Towards Dynamic and Cooperative Multi-device Personal Computing 203

Krause, A., Siewiorek, D., Smailagic, A., Farrington, J.: Unsupervised, Dynamic Identification
of Physiological and Activity Context in Wearable Computing. In: Proceedings 7th IEEE
International Symposium on Wearable Computers, NY, USA, pp. 88–97. IEEE Computer
Society Press, Los Alamitos (2003)

Kuladinithi, K., Timm-Giel, A., Goerg, C.: Mobile Ad-hoc Communications in AEC Industry.
ITcon 9(Special Issue on Mobile Computing in Construction), 313–323 (2004)

Kunito, G., Sakamoto, K., Yamada, N., Takakashi, T.: Architecture for Providing Services in
the Ubiquitous Computing Environment. In: Proceedings 6th International Workshop on
Smart Appliances and Wearable Computing, Lisbon, Portugal (2006)

Lehikoinen, J., Holopainen, J., Salmimaa, M., Aldrovandi, A.: MEX: A Distributed Software
Architecture for Wearable Computers. In: Proceedings 3rd International Symposium on
Wearable Computers, Victoria, Canada, pp. 52–57. IEEE Computer Society Press, Los
Alamitos (1999)

Majoe, D.: Ubiquitous-computing enabled wireless devices. In: Stephanidis, C. (ed.) Universal
access in HCI: inclusive design in the information society, pp. 444–448. Lawrence Erl-
baum, Mahwah (2003)

Ogris, G., Stiefmeier, T., Junker, H., Lukowicz, P., Troester, G.: Using Ultrasonic Hand Track-
ing to Augment Motion Analysis Based Recognition of Manipulative Gestures. In: Pro-
ceedings 9th IEEE International Symposium on Wearable Computers, Osaka, Japan, pp.
152–159. IEEE Computer Society Press, Los Alamitos (2005)

Park, D.G., Kim, J.K., Bong, S.J., Hwang, J.H., Hyung, C.H., Kang, S.W.: Context Aware Ser-
vice Using Intra-body Communication. In: Proceedings 4th IEEE International Conference
on Pervasive Computing and Communications, Pisa, Italy, pp. 84–91. IEEE Computer So-
ciety Press, Los Alamitos (2006)

Pascoe, R.: Building Networks on the Fly. IEEE Spectrum 38(3), 61–65 (2001)
Roman, M., Cambell, R.H.: Gaia: Enabling Active Spaces. In: Proceedings 9th ACM SIGOPS

European Workshop, Kolding, Denmark (2000)
Salber, D., Dey, A., Abowd, G.: The Context Toolkit: Aiding the Development of Context-

Enabled Applications. In: Proceedings ACM SIGCHI 99 Conference on Human Factors in
Computing Systems, Pittsburgh, USA, pp. 434–441. ACM Press, New York (1999)

Satyanarayanan, M.: The Evolution of Coda. ACM Transactions on Computer Systems 20(2),
85–124 (2002)

Savidis, A.: Supporting Virtual Interaction Objects with Polymorphic Platform Bindings in a
User Interface Programming Language. In: Guelfi, N. (ed.) RISE 2004. LNCS, vol. 3475,
pp. 11–22. Springer, Heidelberg (2005)

Savidis, A., Stephanidis, C.: Dynamic deployment of remote graphical toolkits over Bluetooth
from wearable devices. In: Proceedings 11th International Conference on Human-
Computer Interaction, Las Vegas, USA (2005a)

Savidis, A., Stephanidis, C.: Distributed interface bits: dynamic dialogue composition from
ambient computing resources. Personal Ubiquitous Computing 9, 142–168 (2005b)

Schroeder, M.D., Gifford, D.K., Needham, R.M.: A caching file system for a programmer’s
workstation. SIGOPS Operating Systems Review 19(5), 25–34 (1985)

Tuulari, E., Ylisaukko-Oja, A.: SoapBox: A Platform for Ubiquitous Computing Research and
Applications. In: Proceedings International Conference on Pervasive Computing, Zurich,
Switzerland, pp. 125–138 (2002)

DeVaul, R., Sung, M., Gips, J., Pentland, A.: MIThril 2003: Applications and Architecture. In:
Proceedings 7th IEEE International Symposium on Wearable Computers, NY, USA, IEEE
Computer Society Press, pp. 4–11. IEEE Computer Society Press, Los Alamitos (2003)

Want, R., Pering, T., Danneels, G., Kumar, M., Sundar, M., Light, J.: The Personal Server:
Changing the Way We Think About Ubiquitous Computing. In: Borriello, G., Holmquist,
L.E. (eds.) UbiComp 2002. LNCS, vol. 2498, pp. 194–209. Springer, Heidelberg (2002)

204 S. Lalis et al.

Weiser, M.: The Computer for the 21st Century. Scientific American 265(3), 94–104, reprinted
in IEEE Pervasive Computing 1(1), 19–25 (1991)

Wirth, N.: What can we do about the unnecessary diversity of notation for syntactic definitions?
Communications of the ACM 20(11), 822–823 (1977)

Yasuda, K., Hagino, T.: Ad-Hoc Filesystem: A Novel Network Filesystem for Ad-hoc Wireless
Networks. In: Lorenz, P. (ed.) ICN 2001. LNCS, vol. 2094, pp. 177–185. Springer, Hei-
delberg (2001)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

